Invasion by Rattus rattus into native coastal forests of south-eastern Australia: are native small mammals at risk?

The black rat, Rattus rattus, is an alien rodent in Australian ecosystems where niche overlap with native small mammals may lead to competition for resources and displacement of native species. In coastal habitats surrounding Jervis Bay in south-eastern Australia, R. rattus co-occurs with the native bush rat, Rattus fuscipes, and brown antechinus, Antechinus stuartii. Relative distributions and abundances, and fine-scale space use suggest invasive and native rodents compete for use of space and habitat. Such competitive interactions were not evident between R. rattus and native A. stuartii, which was negatively influenced more by disturbance to habitat. Differences in rodent communities between spatially separate forests forming the northern and southern peninsulas of Jervis Bay potentially reflect symmetrical competition and differences in competitive outcomes. In southern forests, R. rattus was largely restricted to patches of disturbed forest associated with campgrounds. Competitive interference by native rodent populations inhabiting surrounding intact forests may have so far limited R. rattus colonization of these areas. In northern forests, R. rattus was the predominant rodent irrespective of disturbance, while populations of R. fuscipes were unusually low seemingly due to poor juvenile recruitment. Native individuals avoided areas frequented by adult R. rattus and given that species did not partition use of microhabitats, R. rattus most likely precluded R. fuscipes from suitable habitat and in doing so limited native populations. We discuss how natural disturbance of habitat and human activity have potentially facilitated successful invasion by R. rattus of the northern forests. Studies that manipulate rodent populations are required to support these interpretations of observed patterns.

Date 04/05/2009
Year 2009
Secondary title Austral Ecology
Volume 34
Number 4
Institution CSIRO Sustainable Ecosystems
Pages 395 - 408
Notes Notes
ISBN/ISSN DOI: 10.1111/j.1442-9993.2009.01941.x