Comparison of methods to detect rare and cryptic species: a case study using the red fox (Vulpes vulpes)

Choosing the appropriate method to detect and monitor wildlife species is difficult if the species is rare or cryptic in appearance or behaviour. We evaluated the effectiveness of the following four methods for detecting red foxes (Vulpes vulpes) on the basis of equivalent person hours in a rural landscape in temperate Australia: camera traps, hair traps (using morphology and DNA from hair follicles), scats from bait stations (using DNA derived from the scats) and spotlighting. We also evaluated whether individual foxes could be identified using remote collection of their tissues. Genetic analysis of hair samples was the least efficient method of detection among the methods employed because of the paucity of samples obtained and the lack of follicles on sampled hairs. Scat detection was somewhat more efficient. Scats were deposited at 17% of bait stations and 80% of scats were amplified with a fox-specific marker, although only 31% of confirmed fox scats could be fully genotyped at all six microsatellite loci. Camera trapping and spotlighting were the most efficient methods of detecting fox presence in the landscape. Spotlighting success varied seasonally, with fox detections peaking in autumn (80% of spotlighting transects) and being lowest in winter (29% of transects). Cameras detected foxes at 51% of stations; however, there was limited seasonality in detection, and success rates varied with camera design. Log-linear models confirmed these trends. Our results showed that the appropriate technique for detecting foxes varies depending on the time of the year. It is suggested that wildlife managers should consider both seasonal effects and species biology when attempting to detect rare or elusive species.

Author S. J. Vine, M. S. Crowther, S. J. Lapidge, C. R. Dickman, N. Mooney, M. P. Piggott and A. W. English
Date 21/07/2009
Year 2009
Secondary title Wildlife Research
Volume 36
Number 5
Institution University of Sydney
Department Institute of Wildlife Research, School of Biologic
Pages 436-446
Notes Notes
ISBN/ISSN DOI: 10.1071/WR08069
Links https://dx.doi.org/10.1071/WR08069