A simple model for ferret population dynamics and control in semi-arid New Zealand habitats

Introduced ferrets (Mustela furo) in New Zealand are subject to population control to reduce their threat to native fauna and the incidence of bovine tuberculosis (Tb) in livestock. To help in evaluating control options and to contribute to a multi-species model for Tb dynamics, a simple Ricker model was developed for ferret population dynamics in a semi-arid environment. The model was based on two data sets and suggested an intrinsic rate of increase for ferrets of 1.0–1.3 year–1 and a carrying capacity of 0.5–2.9 km–2. There was evidence for direct density-dependence in both data sets and the effect appeared to act mainly on recruitment. Dependence of the rate of increase of predators on the density of wild rabbits (Oryctolagus cuniculus) was exhibited in one of the two data sets, together with a numerical response relating current density of predators asymptotically to current density of rabbits, their primary prey. Predators in this data set included both cats and ferrets, estimated from spotlight counts, but the other data set demonstrated a direct proportionality between predator (cat and ferret) spotlight counts and minimum ferrets known to be alive by trapping. The model suggested, firstly, that populations are hard to suppress by continuous culling, with at least a 50% removal per year necessary to effect a suppression of 50% in long-term average density. Secondly, if control is episodic rather than continuous, culling in autumn gives a greater degree of suppression over time (280%, accumulated over time) than culling in spring (180%). A differential equation version of the model provides a component for a general Anderson/May bovine Tb/wildlife (possum/deer/ferret) model.

Author Barlow, N. D. and Norbury, G. L.
Year 2001
Secondary title Wildlife Research
Volume 28
Number 1
Pages 87-94
Region NZ
Links https://www.publish.csiro.au/paper/WR99090.htm