Managing Vertebrate Pests: Foxes

Glen Saunders, Brian Coman, Jack Kinnear and Mike Braysher
This publication, which is one in a series, provides land managers with ‘best practice’ national guidelines for managing the agricultural and environmental damage caused by foxes. Others in the series include guidelines for managing feral horses, rabbits, feral goats, feral pigs and rodents. The publication was developed and funded by the Vertebrate Pest Program in the Bureau of Resource Sciences. Production of the fox guidelines was aided by financial assistance from the Australian Nature Conservation Agency’s Feral Pests Program.

To ensure that the guidelines are widely accepted as the basis for fox management, comment has been sought from state, territory and Commonwealth government agriculture, environmental and resource management agencies. Comments were also sought from land managers and community and other organisations, including the Australian Conservation Foundation, the National Farmers’ Federation, the National Consultative Committee on Animal Welfare, the Anangu Pitjantjatjara Aboriginal Land Council and the Northern Land Council. The Standing Committee on Agriculture and Resource Management has endorsed the approach to managing fox damage set out in these guidelines.

Foxes are widely perceived by the wider community and by scientists and conservationists as a threat to native species due to their role as predators. Despite this perception, there is little reliable information on the effects of fox predation on prey populations or of the effect of fox control on the recovery of prey species. The exception is in Western Australia, where some field experiments have shown that fox control can lead to the recovery of native species, including rock-wallabies, bettongs and numbats. Foxes may also detrimentally affect native species such as birds of prey and large reptiles by competing with them for food, but such impacts are speculative as no studies have been conducted.

Less is known about the agricultural impact of foxes, although there is increasing evidence that foxes may inflict severe levels of lamb predation which were previously unrecognised. Foxes are also implicated in deaths and injuries to calves and dairy cattle, although this impact has not been quantified. There is also a small risk that foxes could have a role in the spread of exotic diseases, such as rabies, should such diseases enter Australia.

There are diverse views about fox management. While economists would argue that spending on pest control should be justified in terms of the economic returns on such investments, this is clearly difficult when the impacts of foxes for both conservation and agricultural values, and the
responses of prey populations to fox control, are poorly quantified. Those with an interest in conservation place a high value on the protection of native species and often consider fox control to be a priority for endangered species protection. People interested in hunting foxes for commercial use or recreation want to retain foxes as a resource. The crash of fox pelt prices resulting from the actions of the anti-hunting lobby in Europe has reduced interest in fox harvesting in recent years. People concerned with animal welfare hope to ensure that fox control or harvesting is conducted using humane techniques. The authors have attempted to take all these divergent views and values into account in compiling the guidelines.

The principles underlying the strategic management of vertebrate pests have been described in Managing Vertebrate Pests: Principles and Strategies (Braysher 1993). The emphasis is on the management of pest damage rather than on simply reducing pest density. The guidelines recommend that wherever practical, management should concentrate on achieving clearly defined conservation or agricultural production objectives.

These guidelines will help land managers reduce damage to agriculture and native fauna caused by foxes through the use of scientifically-based management that is humane, cost-effective and integrated with ecologically sustainable land management.

Peter O’Brien
Acting Executive Director
Bureau of Resource Sciences
CONTENTS

FOREWORD .. iii
ACKNOWLEDGMENTS viii
ACRONYMS AND ABBREVIATIONS ix
GLOSSARY .. x
SUMMARY .. 1
INTRODUCTION .. 7

1. HISTORY .. 11
 Summary .. 11
 1.1 Europe and America 11
 1.2 Australia .. 11

2. DISTRIBUTION AND BIOLOGY 15
 Summary .. 15
 2.1 Distribution and abundance 15
 2.2 Biology ... 18

3. ECONOMIC AND ENVIRONMENTAL IMPACTS 27
 Summary .. 27
 3.1 Environmental impact 28
 3.2 Economic impact 37
 3.3 Resource value and use 41

4. RABIES AND FOXES 43
 Summary .. 43
 4.1 The disease 43
 4.2 Management techniques for rabies control 45
 4.3 Implications for Australia 46
 4.4 Implications for fox management 47

5. COMMUNITY ATTITUDES AFFECTING FOX MANAGEMENT 48
 Summary .. 48
 5.1 Perceptions of the fox 48
 5.2 Sport hunting 48
 5.3 Animal welfare 49
 5.4 Implications of fox harvesting for damage control 54

6. PAST AND CURRENT MANAGEMENT 56
 Summary .. 56
 6.1 History .. 56
 6.2 Legislation and coordination of management programs 57

7. TECHNIQUES TO MEASURE AND CONTROL FOX IMPACT AND ABUNDANCE 63
 Summary .. 63
 7.1 Introduction 63
 7.2 Assessing impact 64
 7.3 Measuring fox abundance 68
 7.4 Use of fox impact and density measurements ... 70
 7.5 Control techniques 72
Figure 8 Predator removal experiment conducted over eight years in Western Australia for five colonies of rock-wallabies. 29
Figure 9 The relative abundance of Rothschild's rock-wallaby, before and after fox control in the Dampier Archipelago. 30
Figure 10 Percentage capture rate of bettongs after five years of fox control in Tutanning Nature Reserve. 31
Figure 11 Numbat sightings in Dryandra State Forest between 1979 and 1992. 32
Figure 12 The quantity of 1080 and the number of baits used for fox control in New South Wales between 1980 and 1993. 55
Figure 13 Bounty payments in Western Australia. 57
Figure 14 Determining the cause of lamb death. 66
Figure 15 Example of a simple map of four hypothetical properties showing the key factors that landholders should record and use to plan fox management. 71

TABLES
Table 1 Density estimates of Australian fox populations. 17
Table 2 Comparison of mean home range estimates for foxes in different habitats. 22
Table 3 Percentage occurrence and percentage volume of major food items identified in the stomachs of foxes. 23
Table 4 Quantity and value of wild red fox pelts supplied during 1982–83 from the major exporting countries involved. 41
Table 5 Number and value of raw fox pelts exported from Australia. 41
Table 6 Number of 35 milligram strychnine baits prepared for fox control in South Australia in 1984–85 to 1990–91. 61
Table 7 State and territory legislative requirements for fox poisoning. 75
The Vertebrate Pests Committee’s Working Group, which is overseeing the preparation of the guidelines — Peter Allen, Roger O’Dwyer, John Hicks, Don Pfitzner, Kevin Heinrich, Neil Hogstrom and John Auty — provided valuable input and comments.

Special acknowledgment is given to the following people who made helpful comments on the draft manuscript: Peter Alexander, Peter Bird, Peter Catling, Terry Korn, Geoff Lundie-Jenkins, Clive Marks, Nicky Marlow, Nick Mooney, Glenys Oogjes, Jeff Short, Linton Staples, Jim Thompson and Paul de Torres.

Several individuals from the Bureau of Resource Sciences deserve mention. Quentin Hart and Hazel Small helped edit the manuscript and figures. Deborah McLeod assisted with preparation of the manuscript. Mary Bomford provided extensive scientific and other editorial comment. Quentin Hart and Mary Bomford organised the final collation and publication.

The draft manuscript was circulated to the following organisations for comment:

- Commonwealth Department of Primary Industries and Energy
- Standing Committee on Agriculture and Resource Management
- Australia and New Zealand Environment and Conservation Council
 - Standing Committee on Conservation
 - Standing Committee on the Environment
- Land and Water Research and Development Corporation
- Meat Research Corporation
- Rural Industries Research and Development Corporation
- International Wool Secretariat
- Australian Conservation Foundation
- National Consultative Committee on Animal Welfare
- National Farmers’ Federation
- Murray Darling Basin Commission
- Australian Veterinary Association
- Anangu Pitjantjatjara Land Council

We wish to thank all these groups for their contributions. Many other people, too numerous to acknowledge individually, also gave us the benefit of their experiences by commenting on drafts of the manuscript. The Australian Nature Conservation Agency provided financial assistance.
ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANCA</td>
<td>Australian Nature Conservation Agency</td>
</tr>
<tr>
<td>ANZFAS</td>
<td>Australian and New Zealand Federation of Animal Societies</td>
</tr>
<tr>
<td>APB</td>
<td>Agriculture Protection Board (Western Australia)</td>
</tr>
<tr>
<td>APCC</td>
<td>Animal and Plant Control Commission (South Australia)</td>
</tr>
<tr>
<td>AUSVETPLAN</td>
<td>Australian Veterinary Emergency Plan</td>
</tr>
<tr>
<td>AVA</td>
<td>Australian Veterinary Association</td>
</tr>
<tr>
<td>BRS</td>
<td>Bureau of Resource Sciences</td>
</tr>
<tr>
<td>CALM</td>
<td>Department of Conservation and Land Management (Western Australia)</td>
</tr>
<tr>
<td>CCNT</td>
<td>Conservation Commission of the Northern Territory (now Parks & Wildlife Commission of the Northern Territory)</td>
</tr>
<tr>
<td>CRC</td>
<td>Cooperative Research Centre for Biological Control of Vertebrate Pest Populations</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Organisation</td>
</tr>
<tr>
<td>DCNR</td>
<td>Department of Conservation and Natural Resources (Victoria) (now Department of the Natural Resources and the Environment)</td>
</tr>
<tr>
<td>DEST</td>
<td>Department of Environment, Sport and Territories</td>
</tr>
<tr>
<td>ERIN</td>
<td>Environmental Resources Information Network</td>
</tr>
<tr>
<td>ESAC</td>
<td>Endangered Species Advisory Committee</td>
</tr>
<tr>
<td>FPP</td>
<td>Feral Pests Program (ANCA)</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic information system</td>
</tr>
<tr>
<td>HCAV</td>
<td>Hunt Clubs Association of Victoria</td>
</tr>
<tr>
<td>HIPD</td>
<td>Hunting indicator of population density</td>
</tr>
<tr>
<td>Landcare</td>
<td>Commonwealth Landcare Program</td>
</tr>
<tr>
<td>MAFF</td>
<td>Ministry of Agriculture, Fisheries and Food (United Kingdom)</td>
</tr>
<tr>
<td>NLP</td>
<td>National Landcare Program (now part of the Natural Heritage Trust)</td>
</tr>
<tr>
<td>PMIS</td>
<td>Pest management information system</td>
</tr>
<tr>
<td>RLPB</td>
<td>Rural Lands Protection Board</td>
</tr>
<tr>
<td>RSPCA</td>
<td>Royal Society for the Prevention of Cruelty to Animals</td>
</tr>
<tr>
<td>SCARM</td>
<td>Standing Committee on Agriculture and Resource Management</td>
</tr>
<tr>
<td>VPP</td>
<td>Vertebrate Pest Program (BRS) (now National Feral Animal Control Program)</td>
</tr>
</tbody>
</table>
abortifacient: a chemical used to induce abortion
ad hoc measures: specially arranged for the purpose
anticoagulant: a substance that slows or prevents blood clotting. Anticoagulants may be used as poisons to kill pest animals.
attenuated strains: a weak strain of an infectious organism
biltong: strips of sun-dried, lean meat
biocontrol/biological control agent: a living organism (or a virus) used to control the population density of another species
brittillised capsule: a capsule for oral dosing of animals that has been made brittle so it will easily shatter when eaten but is safe to carry
cadastral information: usually includes property boundaries, land tenure and roads
Canidae, canids: the family of animals that includes dogs, foxes and wolves
carcinogenic: cancer causing
carrying capacity: the maximum number of animals that the resources available in an area of land can support
chenopod: plant of the family Chenopodiaceae. In arid areas of Australia chenopods are mostly salt-tolerant shrubs such as blue bush and salt bush.
crepuscular: animals active at dawn and dusk
dasyurids: animals in the family of carnivorous marsupials Dasyuridae, including quolls, dunnarts, antechinuses, planigales, ningauis and the Tasmanian devil
diurnal: animals active during the day
dystocia: difficult birth
endangered species: species in danger of extinction and whose survival is unlikely if the causal factors leading to their decline continue to operate
endocrine function: the release, distribution and effects of hormones in an animal’s body
endoparasite: animals that live inside another animal’s body, such as tapeworms and the bacteria in the digestive tract
enzootic areas: areas where a disease occurs in wildlife
European rabbit flea: a flea introduced to assist the spread of myxomatosis
family group: occupants of a fox territory, usually composed of a monogamous adult pair and their offspring from the previous breeding season; a dominant adult pair, subordinate adults and offspring, or other common combinations
forb: a soft herb-like plant with a non-woody stem, especially a pasture plant that is not a grass
geographic information system (GIS): a computer-based system for displaying, overlaying and analysing geographic information such as vegetation, soils, climate, land use and animal distributions
gestation: pregnancy
home range: the area an animal ranges over during its normal daily activities
immunosterility: causing an animal to become sterile by immunising it against one of the proteins or hormones involved in the reproductive process
index, indices: a measure which is correlated with a value but is not an actual estimate of that value. For example spotlight counts give an index of fox numbers but do not give an estimate of total numbers.
intraperitoneal: into the abdominal cavity
intubation: to insert a tube into
LD50: the quantity of poison or lethal dose that will kill 50% of treated animals
macropods: animals in the Macropodidae superfamily which includes kangaroos, wallabies, bettongs, rat kangaroos, potoroos, pademelons and tree kangaroos
minimum convex polygon: a simple method for calculating the area enclosed by an animal’s home range. It involves drawing the smallest possible convex polygon around the outermost locations or sitings of the animal.

monoestrus: become reproductively receptive only once per year

neophobia: fear of new things

nocturnal: animals active at night

one-shot oats: technique for poisoning rabbits using 1080 and oats whereby only one in one hundred oat grains contain 1080 poison, sufficient to kill an adult rabbit

oral delivery: a dose swallowed in food or drink

parturition: birth

pelt: the skin and fur, either raw or dressed

population turnover: the average time it takes to replace a generation

RD$_{50}$: the concentration of a sensory irritant which produces a 50% decrease in an animal’s breathing rate

recombinant virus: a virus which has been modified by artificial genetic manipulation

relict population: a small isolated population of a species that was once more widespread and abundant

scat: faeces

secondary poisoning: intoxication or death of animals caused by ingestion of other poisoned animals

spotlight traverse: a fixed line of travel over which animals in a spotlight beam are counted

sylvatic: involving one or more wildlife species

tarbaby: a technique for killing foxes where 1080 poison in grease is squirted into a fox den. The fox dies from ingesting the poison grease from fur and paws.

territory: the area an animal or group of animals defends from intruders

tetanic spasms: violent generalised muscular contractions with flailing limbs

transect: a rectangular plot in which data collection occurs

translocation: moving a species to a different place or habitat

ultrasound scanning: use of low frequency sound to investigate the internal structure of an animal without surgery, used for counting foetuses

vectors: organisms or substances that are vehicles to spread a biocontrol agent or disease among animals. For example, mosquitoes are vectors of myxomatosis.

vulnerable species: species believed likely to become endangered in the near future if the causal factors continue to operate.

Note: All money values throughout the guidelines are in 1993-94 Australian dollars.